SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85 Phase diagram 05 #### **Significance** Bulk specific gravity is a characteristic used for calculating the volume occupied by the aggregate or various mixtures containing aggregate, including portland cement concrete, bituminous mixes, and other materials that are proportioned or analyzed on an absolute volume basis. Specific gravity is the ratio of the mass of a material to the mass of an equal volume of water. Several categories of specific gravity are used relative to aggregate. Bulk specific gravity (oven-dry), G_{sb} , is used for computations when the aggregate is dry. Bulk specific gravity (saturated surface dry, or SSD), G_{sb} SSD, is used if the aggregate is wet. Apparent specific gravity, G_{sa} , is based solely on the solid material making up the constituent particles and does not include the pore space within the particles that is accessible to water. Absorption values are used to calculate the change in the mass of an aggregate due to water absorbed in the pore spaces within the constituent particles, compared to the dry condition, when it is deemed that the aggregate has been in contact with water long enough to satisfy most of the absorption potential. The laboratory standard for absorption is that obtained after submerging dry aggregate for approximately 15 hours in water. Aggregates mined from below the water table may have a higher absorption, when used, if not allowed to dry. Conversely, some aggregates, when used, may contain an amount of absorbed moisture less than the 15 hours soaked condition. For an aggregate that has been in contact with water and that has free moisture on the particle surfaces, the percentage of free moisture can be determined by deducting the absorption from the total moisture content. The pores in lightweight aggregates may or may not become filled with water after immersion for 15 hours. In fact, many such aggregates can remain immersed in water for several days without satisfying most of the aggregates' absorption T85 stu E&B/ID 7-1 October 2005 potential. Therefore, this method is not intended for use with lightweight aggregate. #### Scope 06 This procedure covers the determination of specific gravity and absorption of coarse aggregate in accordance with AASHTO T 85. Specific gravity may be expressed as bulk specific gravity (G_{sb}), bulk specific gravity, saturated surface dry (G_{sb} SSD), or apparent specific gravity (G_{sa}). G_{sb} and absorption are based on aggregate after 15 hours soaking in water. This procedure is not intended to be used with lightweight aggregates. #### **Terminology** Absorption – the increase in the mass of aggregate due to water being absorbed into the pores of the material, but not including water adhering to the outside surface of the particles, expressed as a percentage of the dry mass. The aggregate is considered "dry" when it has been maintained at a temperature of $110 \pm 5^{\circ}\text{C}$ (230 $\pm 9^{\circ}\text{F}$) for sufficient time to remove all uncombined water. Saturated surface dry (SSD) – condition of an aggregate particle when the permeable voids are filled with water, but no water is present on exposed surfaces. Specific Gravity – the ratio of the mass, in air, of a volume of a material to the mass of the same volume of gas-free distilled water at a stated temperature. Apparent Specific Gravity (G_{sa}) – the ratio of the mass, in air, of a volume of the impermeable portion of aggregate to the mass of an equal volume of gas-free distilled water at a stated temperature. Bulk Specific Gravity (G_{sb}) – the ratio of the mass, in air, of a volume of aggregate (including the permeable and impermeable voids in the particles, but not including the voids between particles) to the **Moisture conditions** T85 stu E&B/ID 7-2 October 2005 mass of an equal volume of gas-free distilled water at a stated temperature. Bulk Specific Gravity (SSD) (G_{sb} SSD) – the ratio of the mass, in air, of a volume of aggregate, including the mass of water within the voids filled to the extent achieved by submerging in water for approximately 15 hours (but not including the voids between particles), to the mass of an equal volume of gas-free distilled water at a stated temperature. ## Definition: (Specific Gravity Symbols) Sample container and scale ## **Apparatus** - Balance or scale with a capacity of 5 kg, sensitive to 1 g. Meeting the requirements of AASHTO M 231. - Sample container, wire basket of 3.35 mm (No. 6) or smaller mesh, with a capacity of 4 to 7 L (1 to 2 gal) to contain aggregate with a nominal maximum size of 37.5 mm (1 1/2 in.) or smaller; larger basket for larger aggregates. - Water tank, watertight and large enough to completely immerse aggregate and basket, equipped with an overflow valve to keep water level constant. - Suspension apparatus: wire used to suspend apparatus shall be of smallest practical diameter. - Sieves 4.75 mm (No. 4), or other sizes as needed, conforming to AASHTO M 92. #### **Sample Preparation** - 1. Obtain the sample in accordance with the FOP for AASHTO T 2 (see Note 1). - 2. Mix the sample thoroughly and reduce it in accordance with the FOP for AASHTO T 248. - 3. Reject all material passing the appropriate sieve by dry sieving and thoroughly washing to remove dust or other coatings from the surface. The minimum mass is given in Table 1. Note 1: If this procedure is used only to determine the G_{sb} of oversized material for the FOP for AASHTO T 99 or T 180 and in the calculations for the FOP for AASHTO T 224. The material can be rejected over the appropriate sieve, T 99 / T 180 methods A & B 4.75 mm (No.4), T 99 / T 180 methods C & D the 19 mm (3/4 in). Table 1 | Table 1 | | | | | |------------|------------------------------------|--------|--|--| | 1 10111111 | Nominal Maximum
Size*, mm (in.) | | Minimum Mass of
Test Sample, g (lb) | | | 12.5 | (1/2) or less | 2000 | (4.4) | | | 19.0 | (3/4) | 3000 | (6.6) | | | 25.0 | (1) | 4000 | (8.8) | | | 37.5 | (1 1/2) | 5000 | (11) | | | 50 | (2) | 8000 | (18) | | | 63 | (2 1/2) | 12,000 | (26) | | | 75 | (3) | 18,000 | (40) | | ^{*} One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size. 10 11 #### **Procedure** 1. Dry the test sample to constant mass at a temperature of 110 ±5°C (230 ±9°F) and cool in air at room temperature for 1 to 3 hours. Note 2: Where the absorption and specific gravity values are to be used in proportioning concrete mixtures in which the aggregates will be in their naturally moist condition, the requirement for initial drying to constant mass may be eliminated, and, if the surfaces of the particles in the sample have been kept continuously wet until test, the 15-hour soaking may also be eliminated. - 2. Immerse the aggregate in water at room temperature for a period of 15 to 19 hours. - **Note 3:** When testing coarse aggregate of large nominal maximum size requiring large test samples, it may be more convenient to perform the test on two or more subsamples, and then combine values obtained. - 3. Place the empty basket into the water bath and attach to the balance. Inspect the immersion tank to insure the water level is at the overflow outlet height. Tare the balance with the empty basket attached in the water bath. - 4. Remove the test sample from the water and roll it in a large absorbent cloth until all visible films of water are removed. Wipe the larger particles individually. **Note 4:** A moving stream of air may be used to assist in the drying operation, but take care to avoid evaporation of water from aggregate pores. 12 T85_stu E&B/ID 7-5 October 2005 **Submerged container** - 5. Determine the SSD mass of the sample, and record this and all subsequent masses to the nearest 0.1 g or 0.1 percent of the sample mass, whichever is greater. Designate this mass as "B". - 6. Re-inspect the immersion tank to insure the water level is at the overflow outlet height. Immediately place the SSD test sample in the sample container and weigh it in water maintained at 23.0 ±1.7°C (73.4 ±3°F). Shake the container to release entrapped air before recording the weight. Designate this submerged weight as "C". - **Note 5:** The container should be immersed to a depth sufficient to cover it and the test sample during mass determination. Wire suspending the container should be of the smallest practical size to minimize any possible effects of a variable immersed length. - 7. Remove the sample from the basket. Ensure all material has been removed and place in a container of known mass. - 8. Dry the test sample to constant mass in accordance with the FOP for AASHTO T 255/T 265 (Aggregate) and cool in air at room temperature for 1 to 3 hours. Designate this mass as "A". #### **Calculations** Perform calculations and determine values using the appropriate formula below. In these formulas, A = oven dry mass, B = SSD mass, and C = weight in water. Bulk specific gravity $$(G_{sb})$$ $G_{sb} = A / (B-C)$ Bulk specific gravity, SSD ($$G_{sb}$$ SSD) G_{sb} SSD = B / (B - C) Apparent specific gravity ($$G_{sa}$$) $$G_{sa} = A / (A - C)$$ 16 Absorption $$Absorption = [(B - A) / A] \times 100$$ T85 stu E&B/ID 7-6 October 2005 **Sample Calculations** | Sample | A | В | C | B - C | A - C | B - A | |--------|--------|--------|--------|-------|-------|-------| | 1 | 2030.9 | 2044.9 | 1304.3 | 740.6 | 726.6 | 14.0 | | 2 | 1820.0 | 1832.5 | 1168.1 | 664.4 | 651.9 | 12.5 | | 3 | 2035.2 | 2049.4 | 1303.9 | 745.5 | 731.3 | 14.2 | | Sample | G_{sb} | G _{sb} SSD | G_{sa} | Absorption | Reported | |---------|-------------------|---------------------|----------|------------|----------| | 1 | 2.742 | 2.761 | 2.795 | 0.689 | 0.7 | | 2 | 2.739 | 2.758 | 2.792 | 0.687 | 0.7 | | 3 | 2.730 | 2.749 | 2.783 | 0.698 | 0.7 | | Average | 2.737 | 2.756 | 2.790 | 0.691 | 0.7 | These calculations demonstrate the relationship between G_{sb} , G_{sb} SSD, and G_{sa} . G_{sb} is always lowest, since the volume includes voids permeable to water. G_{sb} SSD is always intermediate. G_{sa} is always highest, since the volume does not include voids permeable to water. When running this test, check to make sure the values calculated make sense in relation to one another. 18 Report 19 Results shall be reported on standard forms approved by the agency. Report specific gravity values to 3 decimal places and absorption to 0.1 percent. Tips! - Shake the container and sample when weighing in water to release entrapped air - Compare G_{sb}, G_{sb} SSD, and G_{sa} to see if they make sense. ### **REVIEW QUESTIONS** - 1. What size sample is required for aggregate with a nominal maximum size of 25 mm (1 in.)? - 2. When is soaking required? For how long must material be soaked? - 3. When, in the process, are dry and SSD masses determined? #### PERFORMANCE EXAM CHECKLIST # SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85 | Participant Name | | Oate | | |------------------|--|-----------|---------| | Rec | cord the symbols "P" for passing or "F" for failing on each step of the cho | ecklist. | | | Pr | ocedure Element | Trial 1 | Trial 2 | | 1. | Sample obtained by FOP for AASHTO T 2 and reduced by FOP for AASHTO T 248 or from FOP for AASHTO T 99 / T 180? | | | | 2. | Screened on the appropriate size sieve? | | | | 3. | Sample mass appropriate? | | | | 4. | Washed to clean surfaces of particles? | | | | 5. | Dried to constant mass 110 ±5°C (230 ±9°F) and cooled to room temp | perature? | | | 6. | Covered with water for 15 to 19 hours? | | | | 7. | Basket placed into immersion tank and attached to balance? | | | | 8. | Immersion tank inspected for proper water height? | | | | 9. | Balance tared with basket in tank and temperature checked 23.0 $\pm 1.7^{\circ}$ C (73.4 $\pm 3^{\circ}$ F)? | | | | 10. | Sample removed from water and rolled in cloth to remove visible films of water? | | | | 11. | Larger particles wiped individually? | | | | 12. | Evaporation avoided? | | | | 13. | Sample mass determined to 0.1 g? | | | | 14. | Sample immediately placed in basket, in immersion tank? | | | | 15. | Entrapped air removed before weighing by shaking basket while immersed? | | | | 16. | Immersed sample weight determined to 0.1 g? | | | | 17. | All the sample removed from basket? | | | | 18. | Sample dried to constant mass and cooled to room temperature? | | | **OVER** | Procedure Element | Trial 1 Trial 2 | |---|---------------------------| | 19. Sample mass determined to 0.1 g? | | | 20. Proper formulas used in calculations? | | | Comments: First attempt: Pass Fail Fail | Second attempt: Pass Fail | | | | | | | | Examiner Signature | WAQTC #: |